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ABSTRACT 

The Jet Propulsion Laboratory (JF’L) has built several optical interferometers using a common software framework 
developed for this purpose. The heart of this framework is the Realtime Control (RTC) software product. RTC has 
evolved from its initial implementation to include a powerful dynamic configuration capability and to use Common 
Object Request Broker Architecture (CORBA) technology for commanding and telemetry. This paper describes the 
current implementation of this toolkit. 
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1. INTRODUCTION 

Optical interferometry has become a viable technique for astronomical observations with the convergence of high-speed 
general-purpose processors, high-bandwidth optical sensors and mechanical actuators, and distributed computing 
frameworks. PL’s  Interferometry Realtime Systems and Software Group has developed a software toolkit to support our 
work in interferometry. The RTC product allows flexible command and control of software-based realtime servo 
systems at servo rates exceeding lo&, leading to effective bandwidths in excess of 1kHz. An application for the Keck 
Interferometer is described in [4848-121. Early versions of this toolkit have been described elsewhere’3293 in conjunction 
with the Real-time Interferometer Control System Testbed (RICST), which was created to enable development of this 
software. 

Building distributed applications exhibiting real-time performance requires integrating a wide range of capabilities. 
Many design choices must be made, balancing performance, development effort, maintenance effort, and other concerns 
to successfully deploy these complex systems. This toolkit supports these systems with: 
1, 
2. 
3. 

A set of software components designed to operate in highly configurable real-time systems. 
A set of non-real-time support components to configure and run the systems. 
A design allowing inheritance of and extension to components, to facility adaptation into new environments. 

The RTC software package was developed and has evolved to meet the needs of optical interferometer systems. These 
systems typically have the following attributes: 
1. High rate servo loops controlling hardware. 
2. High volume engineering and science telemetry. 
3, Low-rate, time-sensitive status telemetry. 
4. Distributed processing with multiple CPUs sharing an interface backplane, and with multiple CPUs across racks. 
5. Real-time operating system (e.g. VxWorks) for hard real-time control loops. 
6 .  Non-real-time operating system (e.g. Unix, Linux) for non-real-time components such as telemetry logging and user 

interfaces . 
7. A mix of processor instruction sets, with heterogeneous endian conventions. 
8. A mix of implementation languages, with C++ for real-time code and dedicated high-performance servers, and Java, 

Tcl, Python, Ped, and C++ for non-real-time clients and servers. 

A full system will have the components shown in Figure 1. They include a configuration server, which provides 
information to components as they start up, and occasionally when they are reconfigured at runtime. Another component 
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is a telemetry server, which manages the telemetry coming from various publishers in the system (but primarily from 
real-time components). The Configurator allows a user to alter the configuration managed by the configuration server, 
the GUI allows a user to command real-time components, the sequencer also commands components much like a user 
could do through the GUI. And finally, an archiver may be reading telemetry provided by all of the other components, 
writing the streams to disk for later analysis. 
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Figure 1. RTC Distributed Components 

The software has evolved substantially since first developed in RICST. The most noticeable new features include a 
highly-capable object configuration infrastructure and the use of COMA for our distributed communication. But in the 
process we have also more clearly separated interferometer-specific features from the generic capabilities required for 
any real-time system. This enhances our ability to bring basic features to a new system, allowing us to focus more 
quickly on developing unique new capabilities which may be required. 

2. OBJECT-ORIENTED DESIGN 

RTC has adopted object-oriented (00) methodology as the most suitable approach for building scalable systems. 
Traditional procedural languages such as C and FORTRAN allow one to define functions or procedures, and to define 
data structures on which those procedures may act. The single most important feature of object-oriented languages is the 
concept of grouping hnctions and procedures together with data into an object, and having the attributes (data) and 
methods (functions) organized into a single entity. There are several defining characteristics for object-oriented software 
languages: 
1. Objects. Data and code travel together. Classes are instantiated as objects having methods and attributes. 
2. Inheritance. Objects can be extended via inheritance. Base objects implement what they need; children implement 

specializations or alternate behaviors. 
3. Composition. Objects can own other objects. 
4. Encapsulation. Objects hide information unless that information needs to be exposed outside the object. 

Two attributes of modem object-oriented software, inheritability and extensibility, encourage a different approach to the 
design of applications using RTC, as compared with traditional procedural toolkits. In particular, one will find that for 
object-oriented toolkits component functionality and behaviors blend into the application layers above. In traditional 
procedural approaches, there tends to be a sharp line between a toolkit and an application. Understanding that there is a 
difference contributes to an easier path for design and implementation of applications using object-oriented techniques. 



It may be noted that the earlier RICST development tended to stay away from a few C++ features such as virtual 
methods'. Our experience has since shown that features such as virtual methods (which enable reusing implementation 
code from a base class for an inheriting child class) provide benefits in code compactness, conciseness, and clarity which 
outweigh potential performance degradation; which is measurably small and decreasing in significance with each new 
generation of faster processor. 

3. REAL-TIME COMPONENT ARCHITECTURE 

RTC provides systems with components to allow closed-loop control of complex hardware. These components include: 
1. Device drivers to interact with hardware while insulating higher-level software from details about the device. 
2. Sensors to read and interpret inputs. 
3. Actuators to translate and write outputs. 
4. Servos to control devices, using sensors for inputs to a calculation and using actuators to force a change based on 

the result of the calculation. 
5. Periodic tasks to run servos. These tasks are run in a real-time environment which guarantees that the task will 

complete in its allotted time period, or report that the task did not complete withii the specified interval. 
6. Controller sets to manage sets of servos, allowing coordination of multi-stage servos. 
7. High level objects (gizmos) which can accept commands and which manage periodic tasks containing servos. 

We show these components as layers in a pyramid in Figure 2, with the high-level commandable gizmo at the top and 
the low-level device drivers at the bottom. 
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Figure 2. RTC Real-time Components 

Components in each layer typically conform to an application programming interface (API) which exposes only the 
essential features of that component necessary for use by the layers above. For example, our device drivers typically 
implement Input and/or Output methods. One may correctly deduce that these APIs do not contain configuration 
information. This configuration information may vary from one component to another, and our configuration API 
enables hiding these implementation details; this MI is discussed in a subsequent section. 

A set of services is provided to support the RTC components mentioned above. These include: 
I .  Prioritized periodic task scheduling. 
2. Precise timing. 
3. Object commanding. 
4. High-rate, high-volume telemetry handling. 



Periodic task scheduling and precise timing is required for running reliable high-bandwidth control loops. RTC currently 
uses VxWorks for our production installations to provide real-time performance, though we use our own task scheduler 
to minimize the overhead and latency of scheduling and executing periodic tasks. We expect to see 20-80usec timing 
jitter from our production machines, though of course would prefer having less jitter for our highest-rate control loops. 

Most high-level object commanding is done through CORBA-defined interfaces. Typically commands issued at this 
level are not time critical. Time critical commanding (say, to synchronize transitions within a multi-stage servo) is done 
within RTC and without the intervention of a high-level command by using an IPC mechanism. Both techniques are 
described in the next section. 

4. DISTRIBUTED ARCHITECTURE 

Distributed real-time computing involves coordinating a (possibly large) number of separate computers to solve a single 
set of tasks. Systems may be designed for a distributed topology for a variety of reasons, including: 
1. Locality: needing pieces located next to hardware which is itself distributed. 
2. Performance: needing multiple computers to finish the task within time constraints. 
3. Compatibility: needing to integrate components which are already hosted on systems which can not be augmented to 

host a new application. 
4. Expandability: the application may be required to support additional components at some time in the fbture. If 

designed as a distributed system, this future expansion can be done without redesigning the entire system. 
5 .  Diversity: in some cases this is the best solution for mherently heterogeneous systems, for integrating components 

written in different computing languages, or for combining applications written for different computing platforms. 

Heterogeneous distributed systems must account for variations in machine architectures on all nodes of the system. 
Some processors store data in "little-endian" form, where the first byte stored at a specified address corresponds to the 
least significant bits of the value, and other processors may store data in "big-endian" form, where the first byte stored at 
a specific address corresponds to the highest bits of the value. 

RTC is designed for use in heterogeneous distributed systems. Mechanisms are provided to allow commanding, light- 
weight inter-process communication (IPC), and telemetry collection and storage. Accommodations are made for 
matching conventions across computing platforms. 
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Figure 3. RICST Delay Line Object Figure 4. RTC Delay Line Object 

Initial development of FUCST had focused on the real-time requirements of systems, and used a custom socket-based 
approach for distributing binary packets of information for commanding and for telemetry. As the system matured, and 
the focus shifted to integrating this system with surrounding applications, it became increasingly difficult to manage 



these interfaces and to support implementations for languages such as Java and Lisp. The adoption of CORBA for our 
communication framework neatly solved that problem. Transitioning RICST to become RTC was relatively straight- 
forward, because the initial design of RICST modules mapped well to the capabilities and assumptions provided by 
CORBA. So, much of our code remained the same, while other code could be simply replaced by equivalent 
hnctionality provided by CORBA. In fact, we were able to eliminate several thousand lines of custom code from our 
system by moving to CORBA. Figure 3 is a high-level diagram of a delay line object in RICST which appeared in 
[3350], while Figure 4 shows the components appearing in RTC today for equivalent functionality; the remaining 
functionality is provided by the CORBA infrastructure. 

1. IPC 

Our IPC capabilities for doing double-buffered and fmt-idfirst-out (FIFO) communications over local memory and 
shared memory have been described previouslg. These high-speed, localized implementations typically assume the 
presence of one writer and (possibly) multiple readers. We have since implemented IPC drivers to cover Ethernet, EEE- 
1394 (Firewire), and IEEE-1596 interfaces, with minor changes to our IPC API to more transparently support these new 
components. These protocols can allow multiple writers to participate since they packetize data transfers in an atomic 
manner, but in practice most of our use cases involve point-to-point communication. 

2. CORBA 

CORBA defines a collection of standard interfaces and protocols to address distributed-processing issues. But the most 
obvious effect of having a CORBA-enabled application is that a server object (e.g. an optical delay line) appears to a 
client as though it were co-located with the client application. 

We use several Object Request Brokers (ORBS) to implement a full RTC system. TAO** is used for the real-time 
system, as well as for C++ servers or clients on Unix boxes, and has the nice benefit of using ACE*** which provides 
enhanced portability across platforms. JacORB provides our Java support, working around problems with the default 
CORBA support in Sun’s Java. Mico is used to provide Tcl-based engineering controls and displays. omniORB is used 
for Python code, and ORBit is used for simple Per1 clients. 

CORBA includes standards covering several areas, which taken as a whole provide the features necessary to do 
distributed computing. (It is only recently, starting with the CORBA 2.2 specification, that the standard includes enough 
features to make good on this claim.) The standard includes: 
1. An Interface Definition Language IDL) which can be used to generate stub or glue code for specific programming 

languages. An IDL compiler is typically provided as part of the ORB package. 
2. A generic communications protocol layer (GIOP; pronounced “gee-op”) and a specific protocol for TCP/IP (IIOP; 

pronounced “eye-op ”) . 
3. Language mappings for C++, Cy Python, and a few other languages. Other languages like Tcl and Lisp have 

mappings which are vendor-specific, but which may be proposed as an approved standard mapping in the future. 
4. Standard services for common operations, including a “Naming Service” to enable discovery of available 

application servers. 

RTC defines several interfaces in C O M A  
1. A simple “ping” interface to test for health of a remote object. 
2. A core interface to define structures and some data types, as well as a processor management interfaces. 
3. A configuration interface to allow reading and writing configuration values. 
4. A hardware interface to expose boards and inpudoutput channels associates with those boards. 
5. A telemetry interface to send and receive telemetry. Built on top of C O M A  Event Channels. 
6. A system identification interface to allow characterization of components. 

** The ACE Orb was developed by a team lead by Douglas Schmidt. http://www.cs.wustl.edu/-schmidtlTAO.htm1 
.I* Advanced Communication Environment, Douglas Schmidt, http://www.cs.wustl.edu/-schmidt/ACE.html 
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Additionally, several basic interfaces for interferometry-specific devices such as delay lines and cameras are included to 
support commonality between our various implementation projects. 

Refer to [4848-321 for a discussion of simple CORBA clients in C++, Python, Tcl, and Perl. 

5. CONFIGURATION ARCHITECTURE 

Virtually every real-time component in an RTC system is configurable. Not only does this allow for trivial remapping of 
hardware boards in a system, but also enables full and complete configurability for which kinds of software objects are 
to be used in a system, how many of each will be used and how each will behave. These general capabilities include 
configurable modules and strategies to provide: 
1. Processor initialization. 
2. Dynamic module loading. 
3. Dynamic object configuration. 
4. Dynamic object reconfiguration. 

Configurable objects typically are derived from the tRTCObject class, which gives the module the notion of a name and 
a parent and the notion of a configuration manager. The name and parent information are used to map instantiated 
objects into a configuration heirarchy provided by an external configuration server. tRTCObject provides a large 
portion of the support code required to be a configurable object. Much of this functionality is usable without change, 
which allows derived objects such as, say, a delay line, to be confgurable without much additional code. 

A configurable object will implement Configure and Configureself methods. This allows the object to be extemaIly 
commanded to dynamically reconfigure itself and all of its children, or just itself. 

Every configurable object can respond to a reconfiguration request. It is the responsibility of the configurable object to 
ensure that all child objects are also reconfigured at that time. A configurable item is set by calling the method 
Databaseconfiguration, which is overloaded to support the various data types to be configured. The common data types 
(e.g, integer and double) have predefined implementations for Databaseconfiguration, while a new custom type may 
need an overloading function defined. 

High-level objects (gizmos) can be dynamically assigned to processors. If applications are built using RTC features such 
as IPC, an object can be reassigned to another processor or moved to a new processor by simply changing configuration 
information and rebooting the system. In one example at JPL, a testbed team decided to change their system from one 
processor to two to split the processing load, and was up and running in the two-processor configuration within an hour 
or two from their decision to make the change. This included remapping objects which required IPC communication 
between themselves, which were commanded by remote clients, and which provided telemetry to these clients and to a 
data archive. But most of the elapsed time was spent configuring hardware and in understanding which configuration 
parameters needed to change (most of the team has not yet run a multi-processor configuration), and little time was spent 
actually reconfiguring software. 

RTC draws virtually all of its configuration dormation from an external source. We refer to this as a configuration 
database, though it is not necessarily required to be a database in the common understanding of, say, a relational 
database such as Sybase or PostgreSQL. We have a complete implementation of a full-featured configuration 
management system which supports named sets of parameters, versioned sets of parameters, and parameter linkage 
between related items. This system has two components known as Configserver and Configurator, where the former 
provides configuration information to RTC and the latter provides a user interface to manage the configuration 
information. Configserver uses an RDBMS to store configuration information, allowing transaction integrity for data 
changes. 



Figure 5. RTC Configuration user interface 

We have demonstrated other configuration server implementations, including one in just one hundred'lines of Python 
code using simple keywordvalue pairs stored in a flat file (which itself was generated by a data dump from 
Configurator). This test implementation demonstrated repackaging possibilities for supporting RTC in a flight 
environment such as Space Interferometry Mission (SIM) [4852-011. 

6. USER INTERFACES 

We have developed a hll-featured graphical user interface (GUI) for use with RTC. The GUI is written in Java and 
interfaces to the real-time system through CORBA-based command and telemetry interfaces. It has the ability to display 
telemetry in both numeric and graphical form, and sets of displays can be configured to come up automatically when the 
application starts. 

d l  aspects of a running RTC-based system can be viewed through this GUI. Typically, a subset of the total available 
information will be displayed at any one time. RTC allows multiple clients to connect to telemetry and to connect to 
objects for commanding, so it is possible to run more than one instance of the GUI on different machines. We have run 
GUIs at JPL in California connected to the Keck Interferometer in Hawaii to allow our engineers to work with folks on 
site. An example GUI display is in Figure 6, showing a command window for a delay line, along with several telemetry 
display windows. 



Figure 6 .  RTC graphical user interface 

Real-time implementations such as the Keck Interferometer [4838-101 produce large amounts of telemetry (well 
above lMB/sec). Handling this volume of data within a Java application has taken some special care to avoid 
performance issues provoked by object-proliferation and subsequent garbage collection. 

7. CHALLENGES WITH NEW TECHNOLOGIES 

There was a happy coincidence of requirements from RTC and new capabilities in the CORBA standard which allowed 
us to make a transition to CORBA. The transition would not have been possible earlier because the CORBA standard 
and individual CORBA implementations were up to the task. 

Adopting COTS technology (and, in fact, using any s o h a r e  developed outside an organization) trades the effort and 
time required for implementing code for the effort and time required to understand the “imported” package. The payback 
for adopting industry-standard technologies is not always immediately quantifiable. 

Open-source COTS (or otherwise OTS) software can help hedge against the risk of choosing a particular technology or 
implementation, particularly for projects with long implementation cycles or long operational lifetimes. 

8. FUTURE DIRECTIONS 

As our real-time components become more mature, we will be pushing some capabilities such as our configuration 
interface into more of the non-real-time portions of our software. For example, several of our systems have or will have 
external, non-real-time high-level sequencers to assist with system operation and these sequencers can and should be 
configured using these techniques. 



We are currently exploring the use of Python for scripting applications in our systems; it is a well-structured, 00 
language with good COMA support and a wide variety of support libraries. 

RTC has been ported to RTAI, a variant of a real-time Linw [4848-691, and we expect to have opportunities to work 
with other platforms. 

9. SUMMARY 

RTC’has evolved substantially since the first implementations of RICST. We have adopted COMA as the middleware 
infrastructure for distributed computing in JPL testbeds and at the Keck Interferometer, and have developed a powerful 
configuration capability for RTC-based systems. This toolkit, though targeted for optical interferometry systems, is 
suitable for a wide range of applications in the real-time control arena. 
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